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Consider a computability and complexity theory in which the
classical set-theoretic oracle to a Turing machine is replaced by
a physical process, and oracle queries return measurements of
physical behaviour. The idea of such physical oracles is relevant
to many disparate situations, but research has focussed on phys-
ical oracles that were classic deterministic experiments which
measure physical quantities. In this paper, we broaden the scope
of the theory of physical oracles by tackling non-deterministic
systems. We examine examples of three types of non-determi-
nism, namely systems that are: (1) physically nondeterminis-
tic, as in quantum phenomena; (2) physically deterministic but
whose physical theory is non-deterministic, as in statistical me-
chanics; and (3) physically deterministic but whose computa-
tional theory is non-deterministic caused by error margins. Phys-
ical oracles that have probabilistic theories we call stochastic
physical oracles. We propose a set SPO of axioms for a ba-
sic form of stochastic oracles. We prove that Turing machines
equipped with a physical oracle satisfying the axioms SPO com-
pute precisely the non-uniform complexity class BPP// log? in
polynomial time. This result of BPP// log? is a computational
limit to a great range of classical and non-classical measurement,
and of analogue-digital computation in polynomial time under
general conditions.
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1 INTRODUCTION

Consider an algorithm that in the course of its computations requests infor-
mation from an external source. In the theory of computability, the external
source is called an oracle. The idea of boosting the power of algorithms – and
the terminology of ‘oracle’ – originates with Alan Turing [1]. He stipulated
that an oracle was not a (Turing) machine and used oracles to decide the truth
of propositions about natural numbers. Its usefulness in computability theory
was demonstrated by Emil Post who studied the computability of sets relative
to other sets, and began to develop theories of degrees of unsolvability in [2].
Oracles have had a profound influence on our understanding of computability
and complexity since they can be used to classify into hierarchies all sorts
of problems that are unsolvable (e.g., Turing degrees [3]) or are unsolvable
with feasible resources (e.g., complexity classes and hierarchies [4]). Gen-
eralisations and applications of relative computability and complexity have
grown; relativised models of computation are so common as to be considered
standard.
Physical oracles: However, suppose the external source consulted by an al-
gorithm is not a pure mathematical entity but a physical device, system or
environment. Suppose the requests for information are requests to observe
physical behaviour and make measurements of physical quantities. We call
this external source a physical oracle. Situations abound where algorithms
with physical oracles may be found, including:

(i) monitoring and controlling devices and machines, such as spatially-
aware phones and autonomous cars;

(ii) experiments to measure physical phenomena, such as the half-life of
an element;

(iii) enhancing algorithms using physical devices, such as application spe-
cific processors, random generators, clocks and biosensors;

(iv) training algorithms to recognise images and behaviour patterns, such
as in machine learning with neural nets.

Clearly, the conception of algorithms with physical oracles is immensely
broad and relates to established topics of study such as analogue-digital sys-
tems, hybrid systems, analogue computers, neural nets, etc.

Since there are infinitely many physical oracles, how can we answer the
questions, What is the computational power of adding a physical oracle?
How does the computational theory depend upon the many and varied physi-
cal theories and models?

Starting in [5, 6], we began a theoretical investigation of physical oracles,
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focussing on their role in experiments (ii). We examined what was involved
in an algorithm requesting and receiving data from a physical process, and
especially interface properties to do with

(a) the error margins involved in the data, and
(b) the time taken by the algorithm to acquire the data.
Three types of error margins were analysed: exact precision, unbounded

precision, and fixed precision. We also placed complexity constraints on the
computations, especially polynomial time.

Our method was to study a variety of classical kinematic, electrical, opti-
cal and atomic experiments in some detail and, in each case, establish meth-
ods and theorems that classified the computational power of Turing machines
equipped with these experiments as physical oracles. The computational clas-
sification needed non-uniform complexity classes [7], and a number of these
complexity classes arose, depending upon the interface properties to do with
precision (a) and timing (b). However, two proved to be particularly common:
the non-uniform classes P/ log? and BPP// log? (see Section 44.1). After
many case studies, we were able to address the questions above by formu-
lating axioms that expressed properties common to a wide class of disparate
physical systems with independent physical theories [8]. We could show that
whilst the physical oracles satisfying the axioms computed the same sets, they
also broke the so called Turing Barrier, i.e., algorithms with physical oracles
– and constrained by polynomial time – could decide the halting problem for
Turing machines.

One purpose of our programme is create a theory that can combine algo-
rithmic computation with physical processes via their physical theories. The
basic architecture of an algorithm with a physical oracle is depicted in Figure
1, in which arrows are used to indicate the direction of flow of information.
An important point is to see the physical system as a component distinct from
its physical theory. This is natural when one recalls that in modelling a phys-
ical system there can be many assumptions that can be chosen and that need
to be evaluated with regard to physical accuracy or computational complex-
ity. Even in kinematic systems there are simple modelling choices that lead
to very different theoretical outcomes [9]. The physical theory influences the
design of the measurements, interface and algorithm. In each case, the exper-
iments studied – and which were the target of the first axiomatisations [8] –
were elementary and had classical explanations that needed only simple frag-
ments of physical theories. Keeping examples simple meant that we could
focus on the new ideas without being distracted by debates about physical
modelling. In particular, the experiments were deterministic.
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FIGURE 1
An analogue-digital system.

Stochastic oracles: In this paper we analyse physical oracles that can be
more complicated and so more realistic or useful. The physical systems will
be non-deterministic and require probability theory to model and reason about
their behaviour. These we call stochastic physical oracles. The nature of
non-determinism in physical systems is intriguing and there is a need for a
taxonomy of the causes of the non-determinism. The new physical oracles
we wish to introduce are physical systems that are:

1. physically nondeterministic, such as devices to measure half-life in the
atomic decay of an element, and other quantum phenomena;

2. physically deterministic, but whose physical theory is non-deterministic,
such as brownian motion and thermodynamic phenomena that use statistical
methods because of their scale and complexity;

3. physically deterministic, but whose computational theory is non-deter-
ministic because of unknowns arising from error margins.

See Figure 2. We encountered the use of probabilities in the case of 3.
when dealing with fixed error margins for classical experiments see, e.g., [8].

The stochastic physical oracles greatly extend the role of the theory in the
case of experiments (ii), but also are needed to apply the theory to the case
of control (i) and learning (iv). Interestingly, independent studies of neural
networks had come across non-uniform complexity classes – see subsection
9.2.

Thus, we consider physical systems whose behaviour is modelled prob-
abilistically and depends upon a physical quantity or parameter. Following
an examination of examples of non-deterministic physical systems illustrat-
ing the three categories 1 - 3, we formulate a set SPO of axioms for a class
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of physical systems to qualify as stochastic oracles. We prove the following
theorem (Corollary 7.1), which follows from Theorems 5.2 and 7.1:
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FIGURE 2
Types of stochastic physical oracle.

Theorem. Let SPO be the axioms for stochastic physical oracles. Let P
be a physical system whose behaviour depends upon a physical quantity or
parameter σ. Suppose P satisfies the axioms of SPO. Then: a set A ⊂
{0, 1}? is decidable in polynomial time by a Turing machine with physical
oracle P and an unknown parameter σ if, and only if, A ∈ BPP// log?.

Naturally, BPP// log? is an established computational entity. Thus, for
completeness, we generalize the fair probabilistic Turing machine of BPP
to the case of probability of transition p ∈ (0, 1) and prove the following
statement (Theorem 8.3):

Theorem. The class of sets decidable in polynomial time by p-probabilistic
Turing machines with bounded error probability is exactly BPP// log?.

In Section 2, we introduce the three types of non-deterministic physical
process and illustrate them with experiments with atomic decay, brownian
motion and a beam balance to measure mass. In Section 3, we formulate
the axioms SPO and show the examples in Section 2 satisfy the axioms; for
contrast we also consider some physical features that are not covered by the
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axioms. Some technical preliminaries are the subject of Section 4; a full ac-
count of the concepts of structural complexity that we will be using can be
found in [7, 10]. Lower and upper bounds are studied in Sections 5 and 7, re-
spectively. Technical aspects of computation trees, needed for upper bounds,
are discussed in Section 6. Finally, in Section 8, we apply our methods to
a form of probabilistic Turing machine and end with concluding remarks in
Section 9.

2 MEASUREMENT BASED ON PROBABILITIES

We look at some examples where we make measurements of a physical pa-
rameter. The class of physical systems we are theorising have two basic prop-
erties: observations result in two valued data, and queries give probabilistic
results which are independent and identically distributed. The probability of
a given result is defined by the physical parameter.

2.1 Radioactive decay

Radioactive decay is a phenomenon whose theory asserts that no measure-
ment made on an atom can alter its decay. Radioactive decay is a classic ex-
ample of an independent random process. Consider a radioactive isotope with
a half-life H , which is the physical quantity we intend to measure. Imagine
a single atom is observed for a fixed time T , and we record if it has decayed
in this time interval [0, T ] (returning ‘yes’) or not (returning ‘no’). The prob-
ability of ‘yes’ is

P [yes] = 1− exp(− log(2)T/H) . (1)

If we have enough observations then we can find error bounds (or confidence
intervals) for the half-life H . We return to radioactive decay in Section 3.3.

2.2 Random walk with an absorbing surface

A number of physical systems can be modelled or approximated by random
walks. Consider a random walk of a particle on 1-dimensional integer lattice.
The particle begins at position x = 1 at time t = 0. Then, at each unit time
interval, the particle moves right, with probability σ, or left, with probability
1− σ, as outlined in Figure 3.
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FIGURE 3
Random walk on the line with absorption at x = 0.

We would like to measure the probability σ. To do this, we choose to set
up an absorbing barrier at x = 0, so that the first time the particle reaches
x = 0 it sticks there, and we record that the particle has been absorbed (see
[11]). In time T = 1 the probability that the particle has been absorbed is
1− σ, and in time T = 3 the probability of absorption is 1− σ + (1− σ)2σ.
For larger times, we must count the possible paths of a given length from 1 to
1 which do not go through 0. To reach x = 0 for the first time at time n + 1

the particle must have reached x = 1 at time n not via x = 0. The cardinality
of this set is that of a set of allowable bracketings, where a movement to the
right is represented by “(” and a movement to the left is represented by “)”.
Thus the paths of length 6 from 1 to 1 which do not go through 0 can be
denoted by {

((())), (()()), (())(), ()(()), ()()().
}

Following this shows that the probability of absorption in time T is given by

F (σ) =

T∑
t=1
t odd

1

t

(
t

t+1
2

)
(1− σ)

t+1
2 σ

t+1
2 −1 . (2)

This finite step size random walk is used as an approximation for Brownian
motion. As the random motions referred to by Titus Lucretius Carus [12]
in the 1st Cent. B.C. are caused by air currents, the first proper descriptions
of motion of larger particles caused by random motion of atoms was by the
botanist Robert Brown [13] and the biologist Jan Ingenhousz, and the de-
tailed theory was due to Einstein [14]. We may imagine that our analysis is a
mathematical simplification of observing Brownian motion in natur

2.3 Monte Carlo methods
The theories of many physical systems involving quantum fields have results
expressed as integrals over high dimensional spaces. Often, the best way to
estimate these integrals is to use Monte Carlo integration [15]. Effectively,
the values of the integrals are to be measured experimentally. (Strictly, such
systems will be an example of our current axioms only when integrating a
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characteristic function of a subset, requiring only a 0 or 1 response.) There
are advantages in using physical random number generators (see the article
by Tony Warnock in [15]) rather than algorithmically generated ones (the
potential problems here are studied in [16]), and there has been recent interest
in the theory and practicality of physical random number generators [17].

Unusual examples of experiments whose theory contains a Monte Carlo
method include probabilistic experimental calculations for finding π, which
have been promoted in schools as part of Pi day (March 14th). These include
dropping rods onto parallel lines and seeing how many cross the two parallel
lines, or making random dots on a square with a circle inscribed, and counting
how many dots are inside the circle.

2.4 Experimental error
In any experiment that has error margins, we have an experiment capable of
producing different results when repeated. Suppose the result of an experi-
ment that has error margins is an event that can be classified as occurring or
not occurring, i.e., ‘yes’ and ‘no’ for short. If these results are independent
and identically distributed, we could use the methods in this paper to estimate
the probabilities of ‘yes’ and ‘no’ from a sequence of experimental results.
However, to go further and link this error probability to some underlying
physical parameter, the theory of the experiment must describe the resulting
probability distribution of ‘yes’ and ‘no’ as a function F of the parameter σ.

z y

Rigid block

FIGURE 4
The broken balance experiment.

As a concrete example, we consider a simple experiment with an error
margin that has one of two events when observed. The broken balance exper-
iment (BBE for short) consists of a balance scale with two plates. In the right
plate of the balance is placed a body with unknown mass y that we intend to
measure. We place test masses z on the left plate of the balance. If z < y,
then the plates do not move since the rigid block prevents the right plate from
moving down. If z > y, then the left plate will move down. If z = y, the
plates will not move. The scheme of this experiment is represented in Figure
4.
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A pressure-sensitive stick is placed below the left plate of the balance such
that, if the left plate moves down, it touches the pressure-sensitive stick and
it reacts producing a signal. Several physical properties of the experiment
are discussed in [18]. If the stick is triggered in fixed time T the result is
‘yes’, and otherwise ‘no’. For every unknown mass y and test mass z, the
experimental time of the BBE, i.e., the time between the placement of the
mass z and the detection, is given, up to a constant factor, by the function:

Texp(z, y) =


√

z+y
z−y if z > y

∞ otherwise
.

There may be several sources of error in the experiment: for example,
errors in the experimental time Texp or inaccuracy in the pressure-sensitive
stick. For a fixed test mass z this might result in identical experiments having
non-identical outcomes. As mentioned previously, we could still measure
the probability under assumption of independence and identically distributed
results. Taking timing as the source of the error, if we had a theory of how the
errors in the experimental time Texp were distributed, we could then proceed
to an experimental determination of the unknown mass y.

3 AXIOMS FOR STOCHASTIC PHYSICAL ORACLES

3.1 On nondeterministic physical oracles
Informally, an oracle to an algorithm has the capacity to answer questions
generated by the algorithm; the answers may then be used in the algorithm’s
computations. Traditionally, after Post, oracles have been idealised as sets, or-
acle queries as set membership, and the queries answered in unit time. Clearly
the idealisation can be changed replacing functions with sets and allowing the
time to vary, e.g., query time being a function of the length of the question.

A physical oracle to an algorithm assumes that a physical process is in-
volved in answering queries, more specifically that the query causes an ob-
servation or measurement of physical behaviour to be made, and the result
returned to the algorithm. Queries may or may not contain data (initial condi-
tions, parameters etc.). Physical oracles may be physical devices, experiments
or environments.

A nondeterministic oracle can return a number of possible answers for a
single query. This can lead to nondeterministic computation where the oracle
answers are utilised by the algorithm. A physical oracle can be nondetermin-
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istic, in fact given the errors involved in the measurement process this is very
likely. The most obvious cases of nondeterminism are:

1) A single answer is returned for each query, but the answer is not uniquely
defined by the query, i.e., identical queries may give different answers at dif-
ferent times.

2) A number of possible answers are returned to a single query; indeed the
number may change each time a query is made.

In principle, the answer given by a nondeterministic oracle may depend on
some complicated series of calculations or observations about which we have
no idea. We can dramatically simplify this situation by restricting to stochas-
tic physical oracles, by which we mean nondeterministic physical oracles in
which the answers to a query obey well defined probabilistic rules. Observing
the non-deterministic behaviour of a physical process may not be dependent
on a physical theory; the emergence of probabilities is dependent on a choice
of physical theory about the process.

3.2 On stochastic physical oracles
Here we specialise the idea of nondeterministic oracles to a fundamental case
where we can analyse their behaviour in some detail. Imagine a determin-
istic Turing machine coupled with an oracle that is a physical system whose
behaviour is non-deterministic. We suppose the behaviour is described by
probabilities, and that queries to this physical oracle return an answer that
may be ‘yes’ or ‘no’. Each query triggers an independent identical experi-
ment, which proceeds in a fixed time to the two possible outcomes; the oracle
is not passed any parameters in queries. These outcomes are then indepen-
dent identically distributed random variables. This means that each outcome
is not dependent on the answers to previous queries, or even the number of
previous queries.

Further, suppose the probability of the outcomes is determined by a single
physical quantity or parameter σ in the physical system.? For convenience
let σ ∈ [0, 1], as it is easy to renormalise another closed bounded interval with
rational end points to [0, 1] by changing variables. The difficulties of taking
an unbounded range for the parameter will be illustrated by proton decay in
Section 3.4.

We suppose that, according to some physical theory PT , the probability of
‘yes’ is given in terms of a physical parameter σ ∈ [0, 1] by a function F (σ).
Given F : [0, 1] → [0, 1], we use data from repeated consultations of the

? We have taken one parameter for simplicity, in principal this could be generalised.
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oracle to measure the physical parameter σ. Now we can give the axioms for
a basic type of stochastic physical oracle for measurement (SPO for short).

Definition 3.1. An SPO consists of a physical oracle and (fragment of) a
physical theory PT so that,

1. The queries to the oracle carry no parameters or additional informa-
tion.

2. The answer to each query is ‘yes’ or ‘no’, and is given in a fixed con-
stant time.

3. The answer is a random variable which is identically distributed for
each query and independent of all previous answers.

There is a physical parameter σ ∈ [0, 1] so that, according to the theory PT ,
there is a function F : [0, 1]→ [0, 1] so that the following hold:

4. Probability. The probability of ‘yes’ is given by the function F (σ), and
no other parameters.

5. Smoothness. F is a continuously differentiable function, i.e., F ∈
C1[0, 1].

6. Lower Bound. There is a rational number ν > 0 which is a lower
bound for |F ′| in [0, 1].

The condition on oracles carrying no parameters means that all queries are
the same. Since F ′ is continuous and, for every σ ∈ [0, 1], F ′(σ) 6= 0, it
follows that F is monotonic (either strictly increasing or strictly decreasing)
in the interval.

Next we turn to the connection with Turing machines. For ease of com-
putation, since Turing machines process binary data, we shall use dyadic ra-
tionals (rational numbers whose denominator is a power of 2). We say that a
dyadic rational w ∈ [0, 1) has length or size n if it can be written as a fraction
with denominator 2n and no smaller power of 2.

Definition 3.2. A Turing machineM coupled to a physical oracle with pa-
rameter σ and function F satisfying the axioms of SPO is called an SPO-
machine provided we can approximate F in the following sense: For all in-
tegers n > 0 and all dyadic rationals w ∈ [0, 1] of length ≤ n we can
compute an approximation Fcalc of F with |Fcalc(w)−F (w)| ≤ 2−n in time
G(n) ∈ O(2n), i.e., G can have up to exponential growing rate.†

† This asymptotic time is not the time that the machine takes to consult the oracle, but only
the time that it takes to compute the function F that gives the probability of outcome ‘yes’.
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We require the exponential bound on the computation time G(n) in Theo-
rem 5.1, we do not need the exact form of G(n).

3.3 Checking the examples satisfy the axioms
The exponential law of radioactive decay was first set out in [19], and this
exponential law of 1902 implies that the probability of decay of an atom does
not depend on its age, an assumption now widely accepted. Using this as
the theory PT we can show that the half-life experiment given earlier satis-
fies our axioms. In the following lemma we use a single atom as a matter
of convenience – we could have used a given fixed number of atoms at the
beginning of each experiment.

Lemma 3.1. A radioactive isotope is known to have a half-life H contained
an an interval [Hlow, Hhigh] where the end points are non-zero positive ratio-
nal multiples of a given time unit. An experiment observes a single atom of the
isotope from time zero to a fixed time T (a rational multiple of the time unit),
and returns an answer ‘yes’ if the atom decays, and ‘no’ if the atom does not
decay. This experimental observation is used as an oracle: by restarting the
experiment, with a single atom of the isotope, every time a query is received.
This experiment satisfies the axioms of an SPO, and gives an SPO-machine
when coupled to a Turing machine.

Proof: First we normalise the half-life by setting

σ =
H −Hlow

Hhigh −Hlow
∈ [0, 1] .

Using the formula from (1) we substitute for H in terms of σ to find

F (σ) = 1− exp(− log(2)T/(Hlow + (Hhigh −Hlow)σ)) . (3)

The derivative is

F ′(σ) = −
exp

(
− log(2)T/(Hlow + (Hhigh −Hlow)σ)

)
(Hhigh −Hlow)T log(2)

(Hlow + (Hhigh −Hlow)σ)2

so we have F (σ) continuously differentiable. Also

F ′(0) = − 2−T/Hlow |Hhigh −Hlow|T log(2)

H2
low

F ′(1) = − 2−T/Hhigh |Hhigh −Hlow|T log(2)

H2
high
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and the maximum value of |F ′(σ)| for σ ∈ [0, 1] is achieved at one of these
points, so we can calculate a rational number 0 < ν ≤ min |F ′(σ)|. There
are standard algorithms for the calculation of F (σ) for rational values of σ
and the constants satisfying the exponential bound in Definition 3.2. �

Note that the chain reaction for fission of 235U is not an exception to the
principle of independence for radioactive decay, as this is caused by slow neu-
tron capture altering the nucleus. However, experiments with exotic forms of
β-decay have found cases where the decay rate is influenced by the environ-
ment of the atoms [20].

Lemma 3.2. The random walk experiment with probability σ as parameter
satisfies the axioms SPO.

Proof: We will compare the random walk experiment to each of the four ax-
ioms on F . For (1) we call the oracle for a given fixed value of T (e.g.,
T = 5). Then (2) gives a formula for F (σ) which is continuously differen-
tiable for σ ∈ [0, 1], satisfying (2). For axiom (3) it is convenient to restrict
to the case where σ ∈ [ 12 , 1). Then the derivative of (1 − σ)

t+1
2 σ

t+1
2 −1 with

respect to σ is

(1− σ)
t−1
2 σ

t−1
2 −1

(
t−1
2 − (2 t−1

2 + 1)σ
)
≤ − 1

2 (1− σ)
t−1
2 σ

t−1
2 −1

for σ ∈ [ 12 , 1), so F ′(σ) 6= 0 on [ 12 , 1). Thus we renormalise the interval and
restrict the range of σ to satisfy the axioms. For axiom 4, note that for fixed
T we have F (σ) a polynomial with rational coefficients. �

3.4 Examples which do not satisfy the axioms
Here we give some variants of the previous examples which do not satisfy the
axioms for SPO.

1. Lack of independence. Suppose that we have a starting quantity of
radioactive isotope, and that each time a query is made, we observe this same
quantity for 60 minutes (i.e., we do not get a new sample on each query), and
then return ‘yes’ for at least one decay in this period, and ‘no’ for no decays in
the period. This will not give identically distributed random variables, as there
will be less atoms of the given isotope in the quantity as time increases. In
fact they will also not be independent, as ‘no’ results to previous queries will
bias future measurements towards ‘yes’, as fewer atoms will have decayed in
the past.

2. Adding parameters and non-identical experiments. An obvious
question is what happens if a parameter is passed to the experiment by the or-
acle call – e.g., the duration T of the experiment in the case of the single atom
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radioactive decay experiment. For example, we could pass the parameters 60,
58, 62, 61,. . . for the number of minutes to observe the atoms in successive
experiments. The results are then (according to our theories of radioactive
decay) independent, but no longer identically distributed. It turns out that
even this seemingly simple situation requires non-trivial statistics to recover
a sensible confidence interval for the half-life, i.e., an interval containing H
with a probability of say ≥ 95%.

In more generality (e.g., a machine reasoning from a few completely dif-
ferent measurements to determine the likely state of a physical system) it is
not clear what the answer would be – probably Bayesian statistics would be
the most practical method to use. However, there are differences between
the Bayesian approach of credibility intervals and the more usual confidence
intervals [21], and it would be necessary to take care in applying them to
complexity theory.

3. Problems with an unbounded interval. The half life of the proton
given by various theories is in the approximate range [1030,∞] years [22],
where∞ means that the proton is in fact stable, a possibility consistent with
all meaurements so far. The search for physical evidence of proton decay
is hampered not only by the very long lifetime (if it indeed is not infinite),
but also uncertainty over what the proton would decay into, meaning that no
single experiment can cover all possibilities. Measurements put the half life
of the proton (for some decay mechanisms) at not below 5.9 × 1033 years
[23]. In contrast, devising a means for measuring the half life of Thorium
232 (which has known decay mechanism and a half life of approximately
1.4× 1010 years) is rather simpler.

4. An example for which we have no lower bound ν > 0 for F ′(σ) for
σ ∈ [0, 1]. Take the random walk with an absorbing surface, for σ ∈ [0, 1]. In
this case, for T = 3 we have F (σ) = (1−σ) + (1−σ)2σ, and so F ′(0) = 0.

4 CANTOR SETS AND ADVICE FUNCTIONS

4.1 Non-uniform complexity classes
Here we describe non-uniform complexity classes based on Turing machines
processing words over {0, 1}, in particular we explain the class BPP// log?

mentioned in the Theorems in the introduction. A non-uniform complexity
class has notation B/F , where B is a complexity class (such as P or Exp),
andF is a class of advice functions. An advice function is a function f : N→
{0, 1}∗, which roughly speaking gives additional information for solving a
problem of given size; f is not necessarily computable.

14



Using the standard word acceptance and Turing machine model of com-
plexity, we can make this more precise: Suppose we have a class B of sets
of words which are to be accepted. Given a word w, we append f(|w|), the
advice associated with words of length |w|, to w, and write the combined
word on the input tape, and ask if that word is in class B. That is, the Turing
machine is given some extra help in its computation, and that advice only
depends on the length of the word.

Note that too much advice makes every possible subset of words com-
putable, as the advice could be a list of all words of the given length that
should be accepted. However, in general this would require the length of the
advice |f(|w|)| to be exponential in |w|. Thus to get interesting classes we
place restrictions on the length of the advice.

Let B be a class of sets and F a class of total functions. The non-uniform
class B/F is the class of sets A for which some B ∈ B and some f ∈ F are
such that, for every w, w ∈ A if, and only if, the concatenation 〈w, f(|w|)〉 ∈
B. For example, take poly to be the class of advice functions which have
length bounded by a polynomial, and log to be the class with length bounded
by a multiple of log2. Thus we have non-uniform classes such as P/poly,
which has polynomially bounded advice and is computable in polynomial
time.

We also need prefix non-uniform complexity classes. For these classes we
use prefix functions, i.e., such that f(n) is a prefix of f(n + 1). The idea
behind prefix non-uniform complexity classes is that the advice for inputs of
size n is also useful to decide smaller inputs. The notation is B/F?, e.g.,
P/ log?.

A probabilistic Turing machine T is a Turing machine with a fair coin toss
oracle (i.e., probability 50% and independence of queries). For a set A of
words, a probabilistic Turing machine T , and an input w ∈ Σ∗, the error
probability of T for input w is the probability of T rejecting w if w ∈ A, or
the probability of T accepting w if w 6∈ A. We say that T decides A with
bounded error probability if there is a number γ < 1

2 , such that the error
probability of T for any input w is smaller than γ. We write BPP to stand
for the class of sets decidable by T in polynomial time with bounded error
probability. Here is the primary complexity class of interest:

Definition 4.1. BPP// log? is the class of sets A for which a probabilistic
Turing machine T , a prefix function f ∈ log ?, and a constant γ < 1

2 exist
such that, for every length n and input w with |w| ≤ n, T rejects 〈w, f(n)〉
with probability at most γ if w ∈ A and accepts 〈w, f(n)〉 with probability at

15



most γ if w 6∈ A.

The classes BPP// log? and BPP// log both use advice of logarithmic
size for a query of size n, but the difference is that the advice for size n for
BPP// log? is also good advice for all shorter queries. To be more precise,
for BPP// log? there is a single infinite word so that the initial segment
of length log2(an + b) (for some constants a, b) is the advice for words of
length n. If we used polynomial size instead of logarithmic the star would be
redundant, but for logarithmic size the ideas differ as the sum of log2(am+b)

from m = 1 to m = n is not logarithmic in n. We should also point out that
the value of the error probability γ < 1

2 is not in itself significant. To get
an error probability of less than any specified amount all we have to do is to
repeat the entire process several times (assuming the repeats are independent)
and take the majority verdict. The condition γ < 1

2 is just what we need to
ensure that the total error for the repeated process tends to zero (in a controlled
manner) as the number of repeats tends to infinity. Some definitions specify
the value γ = 1

3 .
The reader should also note that we use BPP// log? which has a slightly

different definition from BPP/ log?. Given the standard definition of single
/ in complexity theory, for BPP/ log? we would have to specify a value of γ
which was true for all good advice functions f ∈ log ?! For BPP// log? we
only have to find a γ for one choice of good advice, which is far more prac-
tical. However, BPP// log? seems to be little understood as a complexity
class [24].

4.2 Encoding the advice
To prove that SPO-machines compute some non-uniform complexity class,
we encode the advice functions into the real numbers of the Cantor set

C3 =

{ ∞∑
k=1

xk2−3k : xk ∈ {1, 2, 4}

}
,

where every number has a binary expansion composed of triplets 001, 010,
or 100. The advantage of this particular encoding is that there is no need to
distinguish between arbitrarily close representations such as 0.10ω and 0.01ω

to get the most significant bit. This a very common technique in the field of
computing with real numbers (see [25, 26, 27]). Our encoding comes from
[5, 18] and the proof of the following theorem can be found in [18, 28].

Proposition 4.1 (Beggs et al. [18]). For every x ∈ C3 and for every dyadic
rational z with size |z| = m,
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1. if |x − z| ≤ 1
2i+5 , then the binary expansions of x and z coincide on

the first i bits;

2. |x− z| > 1
2m+10 . �

The encoding of a word w ∈ {0, 1}? is denoted by c(w) and is obtained
replacing every 0 in w by 100 and every 1 by 010. Given an advice function
f : N→ {0, 1}? in log?, the encoding y(f) = lim y(f)(n) of f is recursively
defined beginning with y(f)(0) = 0.c(f(0)). Next, as f(n) is a prefix of
f(n+ 1) we write f(n+ 1) = f(n)s, and then define

y(f)(n+ 1) =

{
y(f)(n)c(s) if n+ 1 is not a power of 2

y(f)(n)c(s)001 if n+ 1 is a power of 2

By construction we have that y(f) ∈ C3, since the procedure above cor-
responds to replacing the bits of f by 100 and 010 and adding separators
001 at the end of the codes for every f(2k), k ∈ N. To extract the value of
f(n), we just have to find the number m ∈ N such that 2m−1 < n ≤ 2m

and then read y(f) in triplets, until we find the (m + 1)-th separator. Then,
it is only needed to ignore the separators and replace each 100 triplet by 0

and each 010 triplet by 1. Since f has logarithmic size bound, we know that
|f(2m)| = O(log 2m) = O(m), so that we need 3O(m)+3(m+1) = O(m)

bits to get the value of f(2m) and, consequently,O(log n) bits to get the value
of f(n).

5 LOWER BOUNDS

We show now how an SPO-machine recovers the advice relative to the cur-
rent input size. The following lemma generalizes results found in [5, 8, 18,
29] and in [27], and will be used in this section to establish lower bounds on
the computational power of SPO-machines.

Theorem 5.1. An SPO-machine with ‘yes’ probability F (σ), with σ ∈ C3,
given an integer n ≥ 1, can read O(log(n)) bits of the unknown parameter
σ in polynomial time in n, with error probability bounded by any given γ ∈
(0, 1).

Proof: Each oracle call has an associated probability P (‘yes’) = F (σ), so
if we make ξ oracle calls, the number of times α that the experiment re-
turns ‘yes’ is a random variable with binomial distribution. Let X = α/ξ

be the relative frequency of ‘yes’. The expected value of X is E[X] =
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E[α]/ξ = ξF (σ)/ξ = F (σ) and the variance of X is V[X] = V[α]/ξ2 =

ξF (σ)(1− F (σ))/ξ2 = F (σ)(1− F (σ))/ξ. Chebyshev’s inequality states
that, for every δ > 0,

P (|X − E[X]| > δ) ≤ V[X]

δ2
≤ F (σ)(1− F (σ))

ξδ2
≤ 1

ξδ2
.

If |σ − u| ≤ 2−k−6 then there is a dyadic rational of length k + 5 with
|z − u| ≤ 2−k−6, so |σ − z| ≤ 2−k−5 and by Proposition 4.1 (1) the first k
bits of σ are then the first k bits of z. Suppose that we have chosen u so that
there is a v with |v − u| ≤ 2−k−7 with F (v) = X . Now by the Mean Value
Theorem,

|σ−u| ≤ |σ−v|+|v−u| ≤ |F (σ)− F (v)|
ν

+|v−u| ≤ |F (σ)−X|
ν

+2−k−7 .

From Chebyshev’s inequality

P (|X − F (σ)| > ν 2−k−7) ≤ 22k+14

ξν2
.

If we want an error probability of at most γ, we must make a number of oracle
calls given by

ξ ≥ 22k+14

γν2
.

Then, to a probability of error ≤ γ, we have |σ − u| ≤ 2−k−6, and we can
then find the first k digits of σ. After having made ξ oracle calls and having
calculated X , we now need to find u as required, i.e., so that there is a v
with |v − u| ≤ 2−k−7 with F (v) = X , and we do this by bisection. First
if X /∈ F ([0, 1]),‡ then we set X to the minimum or maximum value of
F ([0, 1]), depending on X being below or above F ([0, 1]).

Now remember that we can only compute Fcalc, an approximation to F .
We look for sign changes in Fcalc−X , where |Fcalc(w)−F (w)| ≤ ν 2−k−8

for all w. To simplify things we assume that F is increasing (decreasing is
similar). By bisection, we find v1 ≤ v2 so that Fcalc(v1) ≤ X ≤ Fcalc(v2)

and |v2 − v1| ≤ 2−k−7. This requires constant plus k evaluations of Fcalc, at
an accuracy requiring time G(const + k) each. Now set u = (v1 + v2)/2.
Now if the value v with F (v) = 0 is in the interval [v1, v2] we are done. If
not, we suppose v ≥ v2 (the other case v ≤ v1 is very similar). Given the
accuracy we calculate Fcalc at, we have

X = F (v) ≥ F (v2) ≥ X − ν 2−k−8 ,

‡ The continuous image of a compact set is a compact set.
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so |F (v)− F (v2)| ≤ ν 2−k−8, so |v − v2| ≤ 2−k−8, so |v − u| ≤ 2−k−7.
In conclusion, using Axiom 4 of SPO in Section 3 we see that we can

find logarithmically many digits of σ in polynomial time, with a given error
probability. �

Note that we considered that the oracle responses are independent and
identically distributed (as stated in the axioms), from which Chebyshev’s in-
equality follows. Otherwise, we have no guarantee that there is convergence
of the sequence of relative frequencies (see [30] for an interesting discussion
on the existence of a limit for relative frequencies).

We now define the concept of a set decided by an SPO-machine in the
context of this paper:

Definition 5.1. We say that an SPO-machineM with unknown parameter σ
and with ‘yes’ probability F (σ) decides A ⊆ {0, 1}? if there exists γ < 1/2

such that, for every input w,M halts and

• If w ∈ A,M accepts w with error probability bounded by γ;

• If w /∈ A,M rejects w with error probability bounded by γ.

Now, we can state and prove the lower bound theorem for our SPO-
machines.

Theorem 5.2. Every set A in BPP// log? is decidable by an SPO-machine
with ‘yes’ probability F (σ), for some σ ∈ C3, in polynomial time. I.e. w ∈ A
is decidable in time polynomial in its length |w|.

Proof: Let A be an arbitrary set in BPP// log? andM a probabilistic Turing
machine with advice f ∈ log?, which decides A in polynomial time with
error probability bounded by γ1 ∈ (0, 1/2).

LetM′ be an SPO-machine with parameter σ = y(f), where y(f) rep-
resents the encoding of f and let γ2 be a positive real number such that
γ1 + γ2 < 1/2. Let w be a word of size n. We know, by Theorem 5.1,
thatM′ can estimate a logarithmic number of bits of y(f) and read the same
amount of bits of f(n) in polynomial time with an error probability bounded
by γ2.

We need now to simulate independent unbiased coin tosses. With proba-
bility at least 1− γ, we can use a sequence of independent biased coin tosses
of length

s

F (σ)(1− F (σ))

(
1 +

1

γ1/2

)
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to produce a sequence of s independent fair coin tosses (see the proof e.g. in
[5, 28]).

Let γ be such that γ1 + γ2 + γ < 1/2. Machine M′ can produce a
sequence of s fair coin tosses in time linear in |s| to within a probability of
γ. Therefore, M′ can decide A in polynomial time, with error probability
bounded by γ1 + γ2 + γ < 1/2. �

6 PROBABILISTIC TREES

In this section, we introduce the concept of a probabilistic tree, which been
used in, e.g., [6, 18, 28]. Here, we clarify the concept for our particular use.

During the computation of an SPO-machineM on a particular input w,
the finite control of the machine may eventually reach the query state trigger-
ing the physical experiment, and, after the scheduled time, it will be in one of
two states, the ‘yes’ state or the ‘no’ state. Then the machine performs some
deterministic computations before a new call to the oracle is made. Therefore,
the oracle calls of the SPO-machine can be represented in a binary tree.

Definition 6.1. A query tree T is an ordered tree (V,E), associated with
an oracle Turing machine, where each node in V is a configuration of the
machine in the query state or in a halting state and each edge in E is a deter-
ministic computation of the Turing machine between consecutive oracle calls
or between oracle calls and halting configurations. Moreover, every node
with zero children is called a leaf and is labeled with ‘A’ or ‘R’, depending
on whether it abstracts an accepting or rejecting configuration.

In a query tree, every internal node represents a call to the oracle. As our
oracle is stochastic, there is a probability associated to each outcome of the
oracle. Thus, we can assign probabilities to the edges of the query tree. A
single computation of a Turing machine, over the input w, corresponds to a
path in the tree, beginning in the root and ending in a leaf. If the path ends in
a leaf labeled with ‘A’, the machine halts in an accepting state, otherwise, it
halts in a rejecting state.

Definition 6.2. A probabilistic tree is a pair (T,D) where T is a query tree,
V being its set of nodes and E its set of edges, and D : E → [0, 1] is an
assignment of probabilities to the edges of T , such that the probabilities of
the outgoing edges of every internal node sum to 1.

Let ρ(T ) be the set of all possible assignments of probabilities to the edges
of T .
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Definition 6.3. Given a probabilistic tree (T,D), the probability PA(T,D)

of acceptance is the sum of the products of probabilities along the edges in
every path that leads to an accepting node, i.e.,

PA(T,D) =
∑
c∈CA

( mc∏
i=1

D(c[i])

)
,

where CA is the set of all paths that end in an accepting leaf, mc is the
length of the path c and c[i] is the i-th edge of that path. Similarly, we define
probability PR(T,D) of rejection as the sum of the products of probabilities
along the edges in every path that leads to a rejecting node.

PR(T,D) =
∑
c∈CR

( mc∏
i=1

D(c[i])

)
,

where CR is the set of all paths that end in a rejecting leaf. (We use the
convention that the sum over an empty set is 0, and a product over an empty
set is 1.)

Note that if the tree has a bound on its depth, then we can assume that all
leaves are at the same depth, i.e., all the paths from the root to the leaves have
the same length, because, even if some computation ends without making m
calls to the oracle, we can continue the computation, doing nothing besides
the oracle calls, and assigning to all the resulting leaves the same label, de-
pending on the state in which the computation had ended.

Definition 6.4. The distance between probabilistic trees (T,D) and (T,D′)

with the same query tree T , denoted by d(D,D′), is given by d(D,D′) =

maxe∈E{D(e)−D′(e)}.

We can restrict the domain of trees that we want to work with by focusing
on t-ary probabilistic trees, i.e., probabilistic trees such that each internal
node of the query tree has exactly t children. Denote by T t

m the set of all t-ary
probabilistic trees of depth m. If m = 0, the probabilistic tree is composed
of one node, corresponding to the case where the machine does not consult
the oracle.

Definition 6.5. For every m, t ∈ N and β ∈ [0, 1], define a function ft :

N× [0, 1]→ [0, 1], that gives the largest possible difference in the probability
of acceptance for two probabilistic trees with the same t-ary query tree of
depth m, such that their distance is bounded by β:

ft(m,β) = sup
{
|PA(T,D)− PA(T,D′)| :

T ∈ T t
m, D, D

′ ∈ ρ(T ), d(D,D′) ≤ β
}
.
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The proof of the following proposition is provided in [18, 28].

Theorem 6.1. For every m, t ∈ N, for every β ∈ [0, 1],

ft(m,β) ≤ (t− 1)mβ .

The following statement generalizes results in [6, 8]:

Theorem 6.2. LetM be an SPO-machine with unknown parameter σ and
with ‘yes’ probability F (σ), deciding a set A in time t(n) with error proba-
bility bounded by γ < 1/4. LetM′ be an identical SPO-machine, with the
exception that the parameter is σ̃ and the probability of ‘yes’ is F̃ (σ̃). If

|F (σ)− F̃ (σ̃)| < 1

8t(n)
,

then for any word of size ≤ n, the probability ofM′ making an error when
deciding A is less than or equal to 3/8.

Proof: Since in time t(n) at most t(n) calls to the oracle can be made, we
conclude that the query tree T associated toM andM′ has maximum depth
t(n). Note that the query tree ofM andM′ is the same, since the machines
only differ in the probabilities associated with the calls to the oracle. Let w be
a word such that |w| ≤ n. LetD ∈ ρ(T ) be the assignment of probabilities to
the edges of T corresponding to the parameter σ and ‘yes’ probability F (σ)

and D′ ∈ ρ(T ) the assignment of probabilities given by parameter σ̃ and
‘yes’ probability F̃ (σ̃). Since |F (σ) − F̃ (σ̃)| < 1/(8t(n)), the difference
between any particular probability is at most µ = 1/(8t(n)). Two and only
two cases can arise:

• w /∈ A: In this case, an incorrect result corresponds toM′ accepting
w. Applying Theorem 6.1, we can bound the probability of acceptance
forM′ in the following way:

PA(T,D′) ≤ PA(T,D) + |PA(T,D′)− PA(T,D)|
≤ γ + t(n)µ

≤ γ + t(n)× 1

8t(n)

=
1

4
+

1

8

=
3

8
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• w ∈ A: In this case, an incorrect result corresponds toM′ rejecting w.
Applying Theorem 6.1, we can bound the probability of rejection for
M′ in the following way:

PR(T,D′) ≤ PR(T,D) + |PR(T,D′)− PR(T,D)|
≤ γ + t(n)µ

≤ γ + t(n)× 1

8t(n)

=
1

4
+

1

8

=
3

8

In both cases, the error probability is bounded above by 3/8. �

Theorem 6.2 has the following corollary, where we denote by a�` the first
` digits of a, if a has ` or more than ` digits, otherwise it represents a padded
with k zeros, for some k such that |a0k|= `.

Corollary 6.1. LetM be an SPO-machine with unknown parameter σ and
with ‘yes’ probability F (σ), deciding some set in time t(n) with error proba-
bility bounded by γ < 1/4. LetMn be an identical SPO-machine, also with
unknown parameter σ, but with the exception that the probability of ‘yes’ is
given by F (σ)�log t(n)+3. Then,Mn decides the same set asM, also in time
t(n), but with error probability bounded by 3/8.

7 UPPER BOUNDS

In the proof of the next theorem, we build a probabilistic tree as defined in
Section 6, from the computation tree of a probabilistic Turing machine.

Theorem 7.1. Every set decided by an SPO-machine with unknown param-
eter σ clocked in polynomial time is in BPP// log?.

Proof: Let A be a set decided in polynomial time t(n) by an AD machineM
with unknown parameter σ and with error probability bounded by 1/4. We
specify a probabilistic Turing machine M′ to decide A in polynomial time
with the help of the advice function f(n) = F (σ)�log t(n)+3∈ log?.

By Corollary 6.1, we know that an SPO-machine with ‘yes’ probability
f(n) decides A≤n, the finite subset of A comprising all the words of length
less or equal to n, with error probability ≤ 3/8. MachineM′ simulatesM
but with ‘yes’ probability f(n).
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Since f(n) = F (σ)�log t(n)+3 is a dyadic rational with denominator given
by 2log t(n)+3, we conclude that m = 2log t(n)+3f(n) ∈ [0, 2log t(n)+3] is an
integer. MachineM′ tosses a fair coin k = log t(n) + 3 times, obtaining the
binary sequence τ1τ2 . . . τk to be viewed as the binary representation of an
integer. If the test τ1τ2 . . . τk < m is true,M′ interprets the result as ‘yes’,
otherwise as ‘no’. The probability of returning ‘yes’ is m/2k = f(n), as
required. The time taken is polynomial in n.

We now prove that the probabilistic Turing machineM′ has an error prob-
ability bounded by 3/8.

The computation tree ofM′ has maximum depth t(n)(log t(n)+3), since
there are at most t(n) calls to the oracle and k = log t(n) + 3 tosses of a coin
for each call. Moreover, those are the only steps of the computation in which
M′ behaves probabilistically. To obtain a probabilistic tree (as in Section 6)
that corresponds to this computation tree, we proceed in the following way:
for every level i ∈ N, we create a new level in the probabilistic tree, assigning
probability f(n) to every left edge and 1 − f(n) to every right edge. The
obtained tree has depth t(n).

Now, let us see that the probabilities involved in the probabilistic tree and
in the probabilistic Turing machine are the same. In level k of the compu-
tation tree, we have 2k nodes, and we know that m of those correspond to
the result ‘yes’ and, consequently, their subtrees are equal. For each of those
m nodes, if we descend k more levels in their subtrees, we have m nodes
that correspond to ‘yes’ result. Thus, at level 2k, we know that there are m2

nodes corresponding to a ‘yes’ in the two first experiments, and so on. When
we have traversed the whole tree, we know that in the last level, we have
2kt(n) leaves, and consequently mt(n) leaves correspond to having had ‘yes’
in all the experiments. We conclude that the probability of having ‘yes’ in all
the experiments is

mt(n)

2kt(n)
=
(m

2k

)t(n)
= f(n)

t(n)
.

In the probabilistic tree, this probability would be the product of t(n) ‘yes’
probabilities, so f(n)

t(n), as expected. The probabilities of ‘no’ coincide as
well. �

Using Theorems 5.2 and 7.1, we get the following corollary:

Corollary 7.1. The class of sets decidable in polynomial time by SPO-
machines with unknown parameter σ is exactly BPP// log?.
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8 RELATION TO P -PROBABILISTIC TURING MACHINES

What is the relationship between our stochastic physical oracles and the many
varied forms of probabilistic computation, especially probabilistic Turing ma-
chines? Given a specification that requires a probabilistic computation, does
there exist a physical oracle which computes it? To try to answer these ques-
tions, we look at different models of random computation involving Turing
machines.

8.1 Probabilistic Turing machines and probabilistic oracles
The idea of probabilistic Turing machines was introduced in [31]. A p-
machine was defined to be a Turing machine with a special probabilistic print
instruction, printing a 1 with probability p and 0 with probability 1− p. This
probabilistic print command is equivalent to a probabilistic oracle, which on
being queried returns 1 with probability p and 0 with probability 1− p (with
each query being independent of all the others). It was noted that the sets
computable by these machines depended on whether p was computable or
not. Probabilistic complexity classes, including BPP were introduced in
[32], and their relation to NP discussed.

In [8] some axioms for a probabilistic oracle were given, and it was shown
that such a probabilistic oracle had a computational power in polynomial time
of BPP// log?. We shall adopt the following definition for the sake of being
definite:

Definition 8.1. For p ∈ (0, 1), a p-probabilistic Turing machine is a Turing
machine equipped with an oracle that to every query returns, in unit time, 1

with probability p and 0 with probability 1 − p, independently of any other
queries. For a word acceptance problem we can assume that all computations
on the same input require the same number of oracle calls, and that every
computation ends with reject or accept.

The tree of computations of a p-probabilistic Turing machine is a full bi-
nary tree, i.e., all leaves are at the same depth, and a computation of the ma-
chine consists of a path from the root to a leaf being an accepting or rejecting
computation, depending on whether it ends in reject or accept, respectively.
We associate with each computation a probability which is the product of the
probabilities at each computation step. The probability of accepting an input
is the sum of the probabilities associated with the accepting computations of
the machine on the given input. The error probability of the machine on some
input is the sum of the probabilities associated with the computations that
give the wrong answer.
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Definition 8.2. We say that a p-probabilistic Turing machineM clocked in
polynomial time decides the set A ⊆ {0, 1}? with bounded error probability
if M halts in polynomial time on all inputs and there exists γ < 1/2 such
that, for every input w,

• If w ∈ A,M accepts w with error probability bounded γ;

• If w /∈ A,M rejects w with error probability bounded by γ.

8.2 Stochastic physical oracles
We analyse the relation between p-probabilistic Turing machines and our
SPO-machines. While we could do this by equating the calculated complex-
ity classes, it is more informative to examine the correspondence directly.

Theorem 8.1. Every set decided by an SPO-machine clocked in polynomial
time with unknown parameter σ and with ‘yes’ probability F (σ) is decided
in polynomial time by a p-probabilistic Turing machine with bounded error
probability.

Proof: LetA be a set decided by an AD machineMwith unknown parameter
σ and ‘yes’ probability F (σ) in polynomial time t(n) and with error proba-
bility bounded by γ < 1/2. Let p = F (σ). We construct a p-probabilistic
Turing machineM′ to decide A.

A p-probabilistic machine can perform deterministic computations, being
sufficient that it makes the same operations on both outcomes of each compu-
tation step. For the oracle calls, machineM′ just has to make one transition,
in which, with probability F (σ) it simulates the transition of M relative to
the outcome ‘yes’, and with probability 1 − F (σ) it simulates the transition
ofM relative to the outcome ‘no’.

The machineM′ makes the same number of transitions than machineM
and therefore runs in polynomial time. Also, as it makes the exactly same
operations thanM, with the same probability,M′ decidesA with error prob-
ability bounded by the same γ < 1/2. �

To prove the reverse statement, we can take a special case of SPO-machine.

Theorem 8.2. Every set decided by a p-probabilistic Turing machine clocked
in polynomial time with bounded error probability is decided in polynomial
time by an SPO-machine.

Proof: Let A be a set decided by a generalized probabilistic Turing machine
M with transition probability p in polynomial time and with error probability
bounded by γ < 1/2.
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LetM′ be an SPO-machine with F : [0, 1] → [0, 1] being the identity,
and set σ = p. Then calls to the stochastic oracle are the same as the oracle
calls we can use to define the p-probabilistic Turing machine. �

Then we can state the following theorem:

Theorem 8.3. The class of sets decidable by generalized probabilistic Tur-
ing machines with bounded error probability clocked in polynomial time is
exactly BPP// log?.

Proof: From Theorems 8.1 and 8.2, we see that generalized probabilistic ma-
chines have exactly the same computational power as SPO-machines with
‘yes’ probability F (σ) = σ. By Corollary 7.1, we know that these machines
decide exactly BPP// log?. �

9 CONCLUSION

We considered a Turing machine coupled with a non-deterministic physical
system as an oracle. Observing the physical system results in two possible
events as outcomes, conveniently labelled ‘yes’ or ‘no’ with certain proba-
bilities. No parameters are needed to observe the physical system. Thus,
thinking of the physical system as an experiment to measure a quantity, no
data is passed in order to initialise or sustain the experiment. After reflecting
on examples of three types of experiments with non-deterministic behaviour,
we proposed a single set of axioms SPO for stochastic physical oracles that
imposed conditions on the calculation of the probabilities from physical quan-
tities or parameters. Then, we proved lower and upper bounds on the compu-
tational power in polynomial time of Turing machines with physical oracles
satisfying SPO, obtaining in both cases the non-uniform class BPP// log?.

For completeness, we considered the mathematical relationship between
Turing machines with physical oracles satisfying SPO and the classic proba-
bilistic Turing machines. Introducing the p-probabilistic Turing machine that
is a probabilistic machine with transition probabilities p ∈ (0, 1) and 1 − p.
we showed p-probabilistic machines clocked in polynomial time compute ex-
actly BPP// log?.

9.1 Background on deterministic physical oracles
Our work on a theory of physical oracles began in [5, 6] and has focussed on
classic, simple, deterministic experiments to measure quantities. In modelling
these experiments, we analysed the interface that enables a physical process

27



to exchange data with an algorithm. The mathematical theory that took shape
was different from that of oracles in computability and complexity theory,
because physical oracle queries are subject to

(a) error margins in data used to make measurements, specifically the three
types exact precision, unbounded precision, and fixed precision; and

(b) time delays needed to make measurements.
In keeping with the physical objectives of the theory, computations were also
subject to

(c) feasible runtimes, especially that of polynomial time.
As the portfolio of experiments grew, results emerged that enabled us to

develop axiomatic methods to show how physical processes could become
physical oracles and, furthermore, to classify precisely their computational
power as physical oracles [8].

Thus, by means of many case studies, and general mathematical meth-
ods, we showed that the computational power of a large class of deterministic
experiments, acting as physical oracles to Turing machines running in poly-
nomial time, is

P/ log?, if queries operate with exact precision or unbounded precision;
and

BPP// log?, if queries operate with fixed precision.
The relevance to the physical world of the Church-Turing thesis has been the
subject of an enormous number of commentaries and speculations, especially
in the wake of Kreisel’s physical questions about the Church-Turing thesis
(see the collection [33]). The area has received more sophisticated attention
in recent years. The computational power of dynamical systems has been ex-
tensively mapped by Bournez; for comments on the Church-Turing thesis see
[34] on analog and hybrid systems. Computation relative to particular theo-
ries of physics have been proposed in the methodologies of our [35] and in
Ziegler’s thorough analysis [36]. The results led us to speculate on a Church-
Turing thesis for analogue-digital computation [37].

Our investigation also yielded insight into the process of measurements
[29, 38, 39]. A survey of our previous deterministic work is [28].

For some time, the emergence of probability in the fixed error case seemed
to be an anomaly: Could it be an artefact of the different probabilistic meth-
ods we needed to tackle this tricky case? However, in this paper we have
shown that the methods we used to solve the fixed precision case uncover and
address subtle problems of non-determinism in error handling. Furthermore,
we have shown that the methods can be extended to tackle the next phase of
theory building, namely the use of more advanced non-deterministic experi-
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ments as physical oracles. Our results here support the proposal in [37] that
BPP// log? is the limit of physical computation.

9.2 Scope of Physical Oracles
We have emphasised that the idea of physical oracles – depicted in Figure 1
– has wide scope. Indeed, the purpose of this paper is to widen the scope by
extending the theory to stochastic oracles. As the Figure 1 shows, there are
four ingredients: the physical process; its observation and measurement; the
algorithm that calls on the measurements; and the theory that enables us to
specify, design and reason about the entire set-up. Our development of the
theory of physical oracles has been shaped by thinking about measurement in
physics. It would be interesting to analyse applications in other areas of sci-
ence and technology, to see how the theory applies and adapts; we mentioned
three other domains in the introduction.

Our idealisations of physical oracles and algorithms are expressed in a
mathematical theory. Therefore, a more pure mathematical form of the the-
ory can also be developed, about abstractly conceived dynamical systems in-
volving continuous and discrete data. Stripping out the application domain
leaves a pure mathematical theory of algorithms that depend on real number
parameters in various ways.

Interestingly, whilst we have worked independently on physical oracles,
we have benefited from work on algorithms that depend on real number pa-
rameters. An example is the artificial recurrent neural net (ARNN), which is
a model of computation in discrete time with real valued parameters, where
computation happens through programming and learning. The ARNN system
satisfies the classical constraints of computation theory, namely, (a) input is
discrete (binary) and finite, (b) output is discrete (binary) and finite, and (c)
the system control is finite. Infiniteness enters with the real number weights
and parameters; a real value that can be a physical magnitude directly affect-
ing the computation or a probability or any other value held in the system.

Three classes of neural nets are worth noting. In the first class Net[Z] the
weights are integers, and the nets are equivalent to classical finite automata. In
the second class Net[Q] the weights are rationals, and the nets are equivalent
to Turing machines. Finally, in the third class Net[R] the weights are reals.
In polynomial time, these latter networks compute some non-recursive func-
tions such as (a unary encoding of) the halting problem of Turing machines.
A net can process a real-valued weight, reading it bit by bit, making the class
of sets decided by the deterministic systems inNet[R] in polynomial time co-
incide with P/poly; or the net can process a probability of transition, making
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the class of sets decided by the stochastic systems in Net[R] in polynomial
time coincide with BPP// log?. In both cases this measurement sounds un-
realistic since the function involved in computing the so-called activation of
the neurones (processors) is the well-behaved piecewise linear function. In an
attempt to recover the classical analytic sigmoid function, in [40] the power
of the deterministic ARNN in polynomial time drops to P/ log? as shown in
[41].

The association of non-uniform complexity classes that break the Turing
barrier has led to controversies, especially in the case of ARNNs where popu-
lar science took up speculations on hypercomputation. In [42], Martin Davis
states that the only way a machine can go beyond the Turing limit is being
provided with non-computable information, and in [43] argued that, even if
a machine could compute beyond the Turing limit, we would not be able to
certify that fact (a phenomenon that can be well understood in [30]). In [44],
Younger et al. still fight for the realization of super-Turing machines with
their electronic engineering project.
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[6] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker. Com-
putational complexity with experiments as oracles II. Upper bounds.
Proceedings of the Royal Society, Series A (Mathematical, Physical and
Engineering Sciences), 465(2105):1453–1465, 2009.

30
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